EL%%%%%%HEWIAB %ﬂ%giiiﬂil l N U {\111(%1{318};11‘ UNIVERSITY

Korea Institute of Information Security & Cryptology

Kunerva+: An Intelligent Security Policy
Generation Framework for Containers

BOM KIM, YUJUNG CHIO, SEUNGSOO LEE*

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INCHEON NATIONAL UNIVERSITY

2024/06/20 @ St EHH CH 2| (c1Sc-S’ 24)

OUTLINE

Problem Statements
Related Work
Kunerva+ Design

Evaluation - Performance, Use Case

Conclusion and Future Work

G@IBBLF@ https://cclab-inu.com

PROBLEM STATEMENTS

e Increased complexity of security management
* Frequent Creation and Deletion of Containers

 Dynamic Network Configuration Changes
* Increased risk of security vulnerabilities

Immutable Containers
Infrastructure /@\
1
@‘@’@Cloud Native
DevOps ®¢ N Apps Cl/CD
\$/
MicroServices Cloud Infrastructure Automation

] [\
e‘b‘bﬂn_raﬁ https://cclab-inu.com

PROBLEM STATEMENTS

e Limitations of Passive Security Policy Management

Misconfiguration

Lack of response to real-
time security needs

Time-consuming and %

Ineffective security policy
configuration

Gaps between security
error-prone @ - - @ requirements and actual
manual management Security Policy policies
Requires expert-level Difficulty in ensuring
knowledge consistency and accuracy

aonInin
e‘J‘bﬂ.ﬂﬁ https://cclab-inu.com

RELATED WORK

Jacobs et al. (LUMI) [1] proposed using natural language to express network management
intent with Nile.

* But this approach utilizes an intermediate form of policy, rather than using natural language
verbatim, and is primarily focused on network configuration.

* Li et al. (AUTOARMOR) [2] developed an automatic policy generation method for inter-
service access control in microservices.

* Although this method effectively handles static analysis and policy updates,
it is not comprehensive enough to integrate both network and system security policies in
cloud-native environments.

[1] Jacobs, Arthur S., et al. "Hey, lumi! using natural language for {intent-based} network management." 2021 USENIX Annual Technical Conference (USENIX ATC 21). 2021.
[2] Li, Xing, et al. "Automatic policy generation for {Inter-Service} access control of microservices."30th USENIX Security Symposium (USENIX Security 21). 2021.

aonInin
@‘J‘bﬂ.ﬂﬁ https://cclab-inu.com

Kunerva+ DESIGN: Architecture

* Aim to enhance the efficiency of security management in cloud-native
by automatically generating and validating network and system security policies

based on natural

1. Accurate interpretation of natural language input: Be able to accurately analyze natural

language input.

language input from users and translate it into security policies.

2. Validate and enforce automated policies: Automate the process of validating and enforcing

the generated security policies.

Kunerva+

Intent .
Sentence

ul

.

P Processor
Intent & Entity H BERT

:\ Classifier MODEL

LLM Executor

) e Validator
1| -

{ ﬂ Policy

9 Prompt Processor

‘e Policy Processor

k Generator

LLM

CRD
Validator

Resource
Validator

¥

Property
Validator

Policy
Enforcer

°

Security
Policy

aonInin
e‘b‘bﬂnﬂﬁ https://cclab-inu.com

Kunerva+ DESIGN: Policy Creation

* Use BERT-based classifiers to identify intents and entities from user input.
* Transform the extracted information into detailed prompts for the policy generator.

Create a policy on the nginx Pod to deny all
egress traffic to the endpoints on port 80

Intent & Entity Classifier

Network: Cilium, Calico, ..
System: KubeArmor, ..

$ k describe pod nginx
Name: nginx
Prompt | =Namespace: default
Processor Labels: app=nginx
Containers:
Port: 80/TCP

Policy Generator

A 4

INTENT A ENTITY
Classifier (BERT) Classifier (BERT)
___________________________________ [
INTENT:| Network
ACTION

POLICY POD NAME

Create a|policy on the nginx Pod to/deny all
ENTITY: - .
egress traffic to the endpoints on/port 80

DIRECTION ENDPOINT

Create a CiliumNetworkPolicy on the nginx
Pod labeled 'app: nginx' to deny all egress
traffic to the endpoints on port 80/TCP in
the 'default' namespace.

LLM

kind: CiliumNetworkPolicy\n
spec:\n endpointSelector:\n

matchlLabels:\n app: nginx\n
egress:\n - toPorts:\n
- ports:\n - port: \"80\"\n

protocol: TCP

aonInin
e‘bbﬂ.ﬂﬁ https://cclab-inu.com

Kunerva+ DESIGN: Policy Validation and Enforcement

* Verify CRD syntax, resource existence, and property conditions.
* Ensure that the policy is correctly configured and applicable.

|

Policy Processor

:

kind: CiliumNetworkPolicy
metadata:
name: deny-egress-port-80
namespace: default
spec:
endpointSelector:
matchLabels:
app: nginx
egress:
- toPorts:
- ports:
- port: "80"
protocol: TCP

A 4

Validator

CRD
Validator

...“schema”: { ...
“‘egress”:
"toPorts": { ...
"ports": {
"port": {

"pattern”: "*(6553[0-5]|655[0-2][0-9]| ... ",

"type": "string"
}

"protocol": {

"enum": [“TCP“, "UDP", "SCTP", "ANY"],

"type": "string"
}...

Resource
Validator

Policy
Enforcer

o

$ k get pod
NAME READY STATUS ...
nginx 1/1 Running ...

Validator

¢ Property

",

$ k describe pod nginx

Name: nginx
Labels: app=nginx
Containers:

Port: 80/TCP

aonInin
@‘b‘bﬂ.ﬂﬁ https://cclab-inu.com

Kunerva+ DESIGN: Select Dataset and Model

e Scraped policy files from GitHub, modified fields, and generated instructions.
e Choose an open text-to-text model for policy creation:

1. Models with small size and low parameter count for high accuracy
2. Models with above-average policy performance for a wide range of generation requirements

Dataset Name Type Size Model Name Size (params) Purpose
Network Policy JSON 166,064/l | 187.3 MB bert-intent-classification 425 MB Intent Classification
System Policy Lines 2,914 74 3.27 MB bert-ner-classification 425 MB NER Classification
Network Policy cav 150070 | 4 10 MB Meta/Meta-Llama-3-8B-Instruct 16GB (8.03B) | Policy Generation
System Policy 1,50071 (3.0007H) DeepSeek/deepseek-coder-7b-instruct-v1.5 |14GB (6.91B) Policy Generation

Table 1. Summary of Datasets

MistralAl/Mistral-7B-Instruct-v0.2

15GB (7.24B)

Policy Generation

Google/codegemma-7b-it

17GB (8.54B)

Policy Generation

Meta/codeLlama-7b-Instruct-hf

14GB (6.74B)

Policy Generation

Table 2. Summary of Model Features

] [\
e‘b‘bﬂn_raﬁ https://cclab-inu.com

EVALUATION: Performance of models (BLEU)

* On average, the fine-tuned model
outperformed the baseline model by

approximately 27%.
OBaseline Model
OFinetuned Model 72.23 75.91
56.09
47.98 52.83 ‘51 .61
33.54 33.74
19.45 %
7 / 10.49
Y % Y P,
Meta Llama3 codegemma codelLlama deepseek coder Mistral
(8B) (7B) (7B) (7B) (7B)

aonInin
e‘b‘bﬂnﬂﬁ https://cclab-inu.com

Test Instruction

Desired Output

Create a CiliumNetworkPolicy allow all
of egress traffic from endpoints labeled
with ‘app: myService’ to the external
IP “10.0.10.2/32’.

Kind: CiliumNetworkPolicy\n spec:\n
endpointSelector:\n matchLabels:
\napp: myService\n egress:\n - toCIDR:\n
-10.0.10.2/32

Predicted
Output

Y

Baseline
Model

kind: CiliumNetworkPolicy
spec:
endpointSelector:
matchLabels:
app: mySerivce
egress:
- toEndPoints:
- matchlLabels:
ip: 10.0.10.2/32

\ 4

Fine-tuned
Model

kind: CiliumNetworkPolicy
spec:
endpointSelector:
matchLabels:
app: mySerivce
egress:
- toCIDR:
-10.0.10.2/32

\ 4

10

EVALUATION: Use Case

* Example: Blocking access to the /etc/resolv.conf file in the nginx pod.

 Demonstrated policy creation, validation, and enforcement process to show the
ability of Kunerva+ to effectively manage security policies in real-world scenarios.

0 $ make ui
——p Enter your intent : Create a policy that blocks

access to the /etc/resolv.conf file in the nginx pod

I_I

~ Intents received {"Intent": "Create a policy that blocks access to
the /etc/ resolv.conf file in the nginx pod"}

~ Intents catched {"Intent.Meaning": "system", "Intent.Entity":
[...{"text":"nginx pod", "type":"POD_NAME"}, {"text":"blocks",
"type": "ACTION"},{"text":"/etc/resolv.conf","type":"PATH"}], .. .}

}

ubeArmor Policy that blocks access to the /etc/resolv .conf file in

~ Prompts processed {"..., "System Prompts": ["Create a

the nginx pod labeled 'app: nginx' in the 'default' namespace"]}

Kunerva+

~ Policy processed {"Policy.Detail": [{"kind":"KubeArmorPolicy",
'apiVersion" : . ..,"metadata":{"name":"ksp-blocks-nginx-. . .", "namespace":
default”, ..., spec": {"selector": {"matchLabels": {"app": "nginx"}}, file":

{"matchPaths": [{"path": "/etc/resolv.conf"}]}, . . .}, "action":"Block"}, . ..}
|

~ CRD syntax validated {"Result": "No problems in this Policy"}

Selected Resource validated {"Pod.Name": "nginx", "Pod.Name space" : "default"}
~ Property in policy validated {{"Result": "File or path exists..: /etc/resolv.conf "}

]

$ kubectl get ksp

apiVersion: security.kubearmor.com/v1
kind: KubeArmorPolicy

metadata:

name: ksp-blocks-nginx-etcresolvconf
namespace: default
spec:

action: Block
file:

matchPaths:

- path: /etc/resolv.conf
selector:

matchLabels:

app: nginx

Y Policy enforced {"Policy.Name": " ksp-blocks-nginx-etcresolvconf ”, "Policy. Name
pace ": "defalut"}

S kubectl exec -it nginx -- cat /etc/resolv.conf
cat: /etc/resolv.conf: Permission denied
command terminated with exit code 1

aonInin
e‘bbﬂ.ﬂﬁ https://cclab-inu.com

11

CONCLUSION AND FUTURE WORK

* Provide an intelligent security policy generation framework to reduce complexity and
human error in containerized environments.

* Propose an automated policy validation and enforcement mechanism to ensure
reliability and accuracy in dynamic cloud-native environments.

 Demonstrate the practical utility of Al in security management by using fine-tuned
LLMs to effectively translate natural language input into accurate security policies.

* Future work focuses on automatically inferring optimal security policies based solely
on resource configuration files to further reduce user input while improving the
system's adaptability to security needs.

[[\ o
e‘b‘bﬂuaj https://cclab-inu.com 12

