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ABSTRACT

Security vulnerability assessment is an important process
that must be conducted against any system before the de-
ployment, and emerging technologies are no exceptions. Soft
ware-Defined Networking (SDN) has aggressively evolved in
the past few years and is now almost at the early adoption
stage. At this stage, the attack surface of SDN should be
thoroughly investigated and assessed in order to mitigate
possible security breaches against SDN. Inspired by the ne-
cessity, we reveal three attack scenarios that leverage SDN
application to attack SDNs, and test the attack scenarios
against three of the most popular SDN controllers available
today. In addition, we discuss the possible defense mecha-
nisms against such application-originated attacks.
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1. INTRODUCTION

Software-Defined Networking (SDN) has aggressively grown
over the past few years, and to date, there are many SDN
controller products available on the market and the industry
is even participating in open-source SDN controller projects.
These SDN controllers are often referred to as network oper-
ating systems (NOS), because most cutting-edge controllers
expose useful northbound APIs to enable the network ap-
plication ecosystem in addition to managing the entire SDN
environment in a centralized manner. ONOS and OpenDay-
light, for instance, are popular open-source NOSes that are
supported by the major companies, who are seriously con-
sidering the adoption of SDN.

When considering the adoption, the security of SDN com-
ponents is obviously a mandatory aspect that should be
thoroughly investigated, and accordingly, such area of study
is gradually gaining attention. Kreutz et al. have introduced
seven possible attack vectors against SDN [7]; however, they
have not verified if these vectors are feasible against real
SDN controller implementations. Meanwhile, there have
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been a few practical efforts to reveal and mitigate the se-
curity problems in real SDN controller implementations as
well. For example, Shin et al. [16] revealed architectural
weaknesses in POX and Floodlight controller and proposed
a secure controller architecture that fundamentally elimi-
nates the weaknesses. Furthermore, Hong et al. [4] unveiled
the vulnerabilities in network element authentication mech-
anisms of OpenDaylight controller and contributed eliminat-
ing the potential threat.

As mentioned, despite the increased attention to the secu-
rity of SDN, the attack surface of SDN is still understudied,
and SDN controllers are prone to the security vulnerabilities
that have not been disclosed yet. Hence, similar to the previ-
ously mentioned efforts, we also disclose three security vul-
nerabilities in three different SDN controllers: Floodlight,
OpenDaylight (ODL) and Open Networking Operating Sys-
tem (ONOS). Here, we specifically attempt to reveal the
design flaws, which are potentially powerful enough to put
the entire network at risk, in the application platform of the
controllers. In order to prove the feasibility and to examine
the potential impact of each vulnerability, we introduce and
demonstrate the attack scenarios in the real SDN environ-
ments.

The remainder of this paper is structured as follows. In
Section 2, we describe how SDN application has become a
serious attack vector that could potentially affect the en-
tire SDN environment to emphasize the importance of the
application layer security. Then, we demonstrate the attack
scenarios against three different SDN controllers to show the
effectiveness of each attack in Section 3. In Section 4, we
discuss the possible defense mechanisms that protect the ap-
plication layer from our attacks. Finally, we discuss related
work in Section 5, and conclusion is described in Section 6.

2. BACKGROUND AND MOTIVATION

This section provides an introduction to network operat-
ing system, and motivating examples to illustrate how an
SDN application might put the managed network at risk.

2.1 Network Operating System

As briefly mentioned in the previous section, a network op-
erating system (NOS) manages the entire SDN environment
as the control plane. Figure 1 illustrates the key components
of a typical network operating system (NOS), and the com-
ponents include the northbound interface, core services, in-
ternal storage and southbound interface. Obviously, the ac-
tual implementations of NOSes are different from each other;
however, most of the well-known NOSes, such as OpenDay-
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Figure 1: Network operating system architecture

light [1] and ONOS [10], are implemented according to such
a typical architecture.

Specifically, the core services generally implement and pro-
vide essential SDN functions, including network flow and
statistics management functionalities, to SDN applications
via the northbound interfaces. The southbound interfaces
are the data plane abstractions, while the internal storage
collects and maintains useful and diverse network informa-
tion for the components of the core and application layers.

In summary, not only successfully managing SDNs in a
centralized manner, most NOSes implement a dynamic and
flexible network application platform as if they were the tra-
ditional operating systems such as Windows or Linux.

2.2 Motivation

The crucial mission of SDN is to provide high-level net-
work abstraction and programmability, and hence, SDN ar-
chitecturally decouples the control plane from the data plane
and expose high-level network abstractions to the appli-
cation layer. Leveraging the abstractions, or Northbound
APIs, anyone can easily develop and distribute SDN appli-
cations that implement useful and innovative network func-
tions in the same way that one would develop applications
for any other operating systems.
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Figure 2: An attack scenario that involves an ad-
versary distributing malicious SDIN applications to
compromise a network operating system
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Accordingly, just like any other operating systems, NOSes
might also have the vulnerabilities that are actually ex-
ploitable. Before we elaborate on the vulnerabilities (Section
3), we introduce an effective attack scenario that demon-
strates how a malicious SDN application, which exploits the
vulnerability of an NOS to compromise the NOS itself or the
managed network, can be installed on the victim’s system
as shown in Figure 2. Before we elaborate the scenario, we
assume that there is an SDN application store for a target
SDN controller (e.g., HP SDN Store [5]). The reason the
application store can exist is that by exposing their APIs
to the outside, they give an opportunity to freely produce
useful applications to developers, and users can dynamically
load the useful applications into the SDN controller.

First, (i) an attacker implements a load balancer applica-
tion that hides a malicious behavior such as sniffing network
topology. Then, (ii) he uploads that application to the SDN
app store. (iii) A user searches a load balancer application
from the SDN app store, and downloads it. Finally, the user
installs the SDN application, and executes it. The malicious
application seems like a benign load balance application, but
it plays malicious acts without any restriction.

The reason the malicious application can be installed and
act is that there is no guideline about malicious behaviors of
SDN applications. In addition, most SDN controllers do not
adopt an inspection mechanism for SDN applications before
executing them. On that point, Christian et al. introduced
an SDNRootkit, which hides some malicious behaviors from
the target SDN controller [14]. With the possibility, we will
show three attack cases for three well-known SDN controllers
in the next section.

3. ATTACK CASE

In this section, we present three attack scenarios against
three well-known open-source SDN controllers; (i) Flood-
light, (ii) ONOS and (iii) OpenDaylight. In order to verify
the effectiveness of each attack scenario, we have tested each
one in a real SDN environment.

3.1 Assumption

As discussed in Section 2, there are diverse vectors that
malicious SDN application could be deployed to the vic-
tim controllers because the modern controllers do not au-
thenticate the applications nor perform application analysis
prior to the deployment. Hence, in our attack scenarios, we
assume that a network administrator has already installed
malicious applications. Such a malicious application deliv-
ery scheme has been introduced and discussed in previous
work [14] as well.

3.2 Floodlight Case

When a PACKET_IN message arrives at the Floodlight
controller, the controller passes the message to the appli-
cations that are interested in such type of message. When
passing the message to the applications, the controller does
not just broadcast the message to all the applications, rather
it sequentially passes the message to each application in a
certain order. During this process, (i) the message reception
order of applications should never be manipulated by any
entity other than the trusted ones (e.g., the core services),
and (ii) the integrity of PACKET_IN messages should be
guaranteed.



Floodlight, however, does not guarantee the integrity of
the message reception order of applications nor the control
message, and a malicious application may leverage such vul-
nerability to launch an attack against the controller itself or
the network. We introduce a working attack scenario that a
malicious application exploits this vulnerability to manipu-
late the network behavior (Figure 3).

@)

App 1 App 2

(3)| PACKET_IN |
M
44 PACKET_IN Listener

Controller

App 3 App 4

@ PACKET_INT

OpenFlow

—> Fl
Switch o

—p Packet

Figure 3: The steps of the Floodlight attack case

1. A malicious application (App 1) accesses the PACKET
_IN listener of Floodlight and modifies the order of the
listeners so that the listener of the malicious one could
be the first one to receive PACKET_INs.

2. Then, Host A attempts to communicate with Host B,
and accordingly, the OpenFlow switch sends a PACKE
T_IN to the controller.

3. The PACKET_IN listener, manipulated by App 1, checks

the order, and then passes the message to App 1 before
passing it to any other applications.

4. Once the malicious application receives the message,
it removes the entire payload value of the message and
hands the forged message over to the next application
(App 2). However, since the payload field has been
wiped out by the malicious application, the next ap-
plication that tries to access the payload throws an
(unexpected) exception.

5. Since the controller cannot handle the exception prop-
erly, the switch is disconnected from the controller, and
as a result, Host A fails to communicate with Host B.

In order to verify if such an attack scenario is effective
against the real SDN controllers, we implemented a Flood-
light application that launches this attack. Like any other
SDN controllers, Floodlight provides rich northbound ser-
vices, and one of the services, called IFloodlightProvider-
Service, allows an SDN application to not only add itself
to the list of the PACKET_IN listeners, but also access and
manipulate the ordered list of the PACKET_IN listeners.
Leveraging such capabilities of the service, it is fairly easy
to implement the malicious application described in Figure
3. We implemented the application to perform these tasks
during the application initialization phase so that the ap-
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Figure 4: The result of the Floodlight attack case

plication can automatically become the first one to receive
PACKET_IN messages whenever it is installed. Further-
more, IFloodlightProviderService even implements the
functionality to manipulate the control message contents,
and to implement the malicious application, we leverage re-
move () method to eliminate the payload of each PACKET_IN
message, and let other applications to process the message
by simply returning Command .CONTINUE value.

Figure 4 illustrates the impact of the actual attack launched
by our application. As shown in Figure 4 (Before), our appli-
cation (appagent) is the last application to receive PACKET
_IN messages; however, once the application has manipu-
lated the list of PACKET_IN listeners, it becomes the first
one on the list as shown in Figure 4 (After). Then, the
application removes the payload from all the PACKET_INs
received, and it passes the manipulated message to the next
application, which is TopologyManger in this case. When
the topology application attempts to access and process the
message, it fails to handle the nullified payload value, and
thus throws a NullPointerException, which leads the con-
troller to disconnect the switch that sent the message.

3.3 ONOS Case

Compared with Floodlight, ONOS provides more advanced
features to improve the SDN environment in many ways. For
example, ONOS allows users to dynamically and program-
matically configure various ONOS components via one of
the Northbound services, called ComponentConfigService
to enhance the configurability of ONOS. This feature is es-
pecially useful when users need to adjust the properties of
various ONOS components (e.g., threshold values, switches
to enable certain features) to fulfill different network require-
ments, and it allows the users to accomplish this without
reimplementing each component.

Meanwhile, this feature introduces a new security threat
to the network. Noting that minor change in the configura-
tion of an ONOS component may completely change the net-
work behavior, such tunable parameters should only be ma-
nipulated by the trusted entities via ComponentConfigSer-
vice. Here, we show that such unrestrictedly configurable
SDN controller environment may put the network at serious
risk. The possible attack scenario is illustrated in Figure 5.

1. A malicious application (App 1) accesses the service
configuration management among available services in
ONOS. The malicious application gets the property
list of a target application.

2. Then, the malicious application manipulates a certain
property of the target application through a configu-
ration manager that is one of ONOS services.

3. Host A sends a packet to Host B, but there is no a
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Figure 5: The steps of ONOS attack case

matched flow rule for the request. Therefore, a switch
generates a PACKET_IN message and sends it to the
ONOS controller.

4. However, the target application cannot make a flow
rule for that message to the switch because the prop-
erty is changed. Therefore, the target application only
sends PACKET_OUT message to the switch.

We implemented a malicious ONOS application that at-
tacks a network as shown in Figure 5. In the actual im-
plementation, we attempt to manipulate the configuration
of the ReactiveForwarding application via ComponentCon-
figService; specifically, we set the PACKET_OUT_ONLY
parameter value to be true. Setting this parameter might be
useful in some certain networks with special requirements;
however, in our experiment, we aim to abuse this tunable
parameter to degrade the overall performance of the target
network.

Before

64 bytes from 10.0.0.2: icmp_seg=11 ttl=64|time=1.05 ms
64 bytes from 10.0.0.2: icmp_seqg=12 ttl=64|time=1.00 ms
64 bytes from 10.0.0.2: icmp_seq=13 tt1=64|time=1.00 ms
64 bytes from 10.0.0.2: icmp_seq=14 ttl=64|time=1.02 ms
64 bytes from 10.0.0.2: icmp_seq=15 ttl=64|time=1.01 ms
After

64 bytes from 10.0.0.2: icmp_seq=11 tt1=64|time=4.42 ms
64 bytes from 10.0.0.2: icmp_seq=12 tt1=64|time=4.28 ms
64 bytes from 10.0.0.2: icmp_seg=13 ttl=64|time=4.57 ms
64 bytes from 10.0.0.2: icmp_seq=14 ttl=64|time=3.98 ms
64 bytes from 10.0.0.2: icmp_seq=15 ttl=64|time=4.78 ms

Figure 6: The result of ONOS attack case

In order to compare the network performance before and
after the attack, we measure the network latency by running
ping tests on a network host as shown in Figure 6. After the
attack, since the ReactiveForwarding application forwards
the traffic on a packet-by-packet instead of flow-by-flow ba-
sis, every single packet on the network experiences the con-
trol path delay, ultimately degrading the overall network
performance. Furthermore, this attack also adds a signifi-
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cant burden on the controller and other SDN applications
because it fundamentally leads the network devices to gen-
erate a PACKET_IN message for each network packet.

3.4 OpenDaylight Case

Similar to other SDN controller implementations, Open-
Daylight also provides diverse northbound services to en-
courage the developers to implement useful and innovative
network functions, and applications running on OpenDay-
light can easily register services or directly call them to
use their network functions. For example, if an applica-
tion wants to see whether a certain host is in a network,
it registers the IHostFinder service called by HostTracker
(registering services). If an application wishes to decode
data packets, it set DataPacketService in the Activator
(using services). In addition, applications can make depen-
dencies on specific services. Similar to previous attack cases,
Since OpenDaylight allows applications to change the ser-
vices of other applications dynamically without constraint,
the attacker can also leverage this ability. The operational
scenario of this case is presented in Figure 7.
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Figure 7: The steps of OpenDaylight attack case

1. A malicious application (App 1) accesses a core service
management of OpenDaylight, and gets the informa-
tion about the services used by a target application.

2. Then, the malicious application removes all services
used by the target application so that the target ap-
plication cannot use any service provided by the con-
troller.

3. After the malicious application removes those services,
Host A sends a packet to the Host B. But, there is no
matched flow rule, and the switch sends PACKET_IN
message to the controller.

4. However, the target application cannot handle PACKE
T_IN message, so the controller does not understand
topology information about the network.

Our target application is ArpHandler that is a default ap-
plication running on OpenDaylight and manages ARP re-
quest and reply packets. We implemented a malicious ap-
plication for the scenario. The malicious application gets
the registered services of the target application in Activa-



tor class through getServiceProperties(). Then, the ma-
licious application calls unregister() to delete the whole
services of the target application.

The ArpHandler registers three services: IHost Finder,
IListenDataPacket, and ICacheUpdateAware as shown in
Figure 8. Using these services, the ArpHandler can manage
ARP packets passing a network. In the case that a malicious
application tries to unregister those services, it can success-
fully unregister all the services of the ArpHandler. Then,
the ArpHandler cannot receive any messages from the con-
troller, and thus it cannot provide any useful information
to other applications. Since ARP packets play a role as an
initiator for network communications, the network managed
by the controller loses its functionality.

Before

org.opendaylight.controller.arphandler
{org.opendaylight.controller.sal.core.IContainerAware}={service.i
d=158}
{org.opendaylight.controller.hosttracker.hostAware.IHostFinder, o
rg.opendaylight.controller.sal.packet.IListenDataPacket, org.open
daylight.controller.clustering.services.ICacheUpdateAware}={cache
names=[arphandler.arpRequestReplyEvent], containerName=default, s
alListenerName=arphandler, service.i1d=270}

After

org.opendaylight.controller.arphandler
{org.opendaylight.controller.sal.core.IContainerAware}={service.i
d=158}

Figure 8: The result of OpenDaylight attack case

4. DEFENSE

The reason the attack cases that are introduced in Section
3 are probable is that SDN applications running on each con-
troller have too powerful authority without any restriction.
Therefore, if a malicious SDN application is installed on the
target controller, it is possible to even subvert the target
SDN environment.

Here, we introduce two defense mechanisms that could
protect such attacks; (i) permission checking and (ii) static
or dynamic analysis.

4.1 Permission Checking

There are some studies about the policy checking for SDN
application [9, 12, 16, 11]. Among them, Noh et al. sug-
gested a permission checking model for an SDN controller
[9]. First, they defined five states on which a network appli-
cation can arrive based on OpenFlow protocol version 1.1.
Also, they described two primary permission sets for SDN
applications. One is the OpenFlow message permission set,
and the other permission set is the controller resource per-
mission set. OpenFlow message permission set has a list
each type of OpenFlow message as a permission rule. The
controller resource permission set means whether an appli-
cation can access resources managed by the controller such
as an internal storage or not.

Figure 9 shows the example operation for permission check-
ing model. Each application has their own permission file,
which each application has to specify what it uses, similar to
Android applications. For example, an application (Appl)

states that they need an authority to install flow rule so
that it can send FLOW_MOD message to the switch. The
network administrator can check the permissions that appli-
cations have, which are downloaded from untrusted sources.
In addition, they implemented an additional layer on Flood-
light controller and it can monitor whether the applications
do disallowed permission.
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Figure 9: Permission checking layer

4.2 Static/Dynamic Analysis

Only adopting permission checking mechanism may be in-
sufficient for making the network environment secure. An-
other method to examine whether an SDN application is
secure or not is static or dynamic analysis for SDN applica-
tions. Before the network administrator downloads and ex-
ecutes SDN applications, the applications can be analyzed
statically or dynamically manner. This mechanism is not
new, but it is needed to secure the network environment.

For static analysis of SDN applications, the source code
of a target application should be provided. Then, we need
to calculate the Control Flow Graph (CFG) (e.g., Soot [8])
and get API calls list. Based on that information, we could
make a decision whether the target application is malicious
or not. Also, for dynamic analysis to be effective, the tar-
get application must be executed with sufficient test inputs
(e.g., control messages such as PACKET_IN) to produce in-
teresting behavior. With software testing measures such as
code coverage, we could observe an adequate slice of the
applications of possible behaviors.

Before those analyses for SDN applications, there should
be a definition of malicious behavior for each controller be-
cause each implementation of the controller is different. How-
ever, the problem is that there is insufficient information
about the malicious behavior for SDN applications.

5. RELATED WORK

There have been several studies [6, 2, 15, 4, 14] that fo-
cus on attack possibility of SDN. Benton et al. point out
that failures due to lack of TLS adoption by vendors for
the OpenFlow control channel because of the performance
issue can make attack vectors such as man-in-the-middle at-
tack and denial of service attack available [2]. Kreutz et al.
argue that the new features of SDN such as a centralized
controller and programmability of managing network envi-
ronment introduce new threats and address possible threat



vectors that make SDN vulnerable [6]. Shin et al. discuss
the feasibility of attacking SDN by introducing flow table
saturation attacks [15]. Hong et al. address the feasibil-
ity of compromising network topology services of controllers
that can cause serious problems such as black hole routing
and making fake link [4]. Christian et al. implemented an
SDNRootkit, which hides some malicious behaviors from a
target SDN controller [14]. The SDNRootkit can install ma-
licious flow rules and get the network information managed
by the SDN controller. However, these malicious behaviors
can be feasible by Java reflection not vulnerabilities of a
target SDN controller.

In addition, some researchers have directly indicated there
are specific issues such as policy conflict, permission check-
ing, access control, and sharing relationships [13, 16, 3, 12,
11]. Porras et al. argue that a flow rule generated by an
SDN application is possible to conflict with other flow rules.
Then, the conflicted rules can make a new rule that is pos-
sible to evade application policies [13]. Shin et al. introduce
a robust and secure controller, which is called Rosemary,
to prevent applications from vulnerabilities that can cause
controller corruptions [16]. Chandrasekaran et al. address
the reliability and fault tolerance problems of SDN as show-
ing the possibilities of controllers and network failures due to
SDN applications [3]. Porras et al. have proposed a security-
enhanced version of Floodlight, which has some key fea-
tures that include authentication, role-based authorization,
a permission model for the data plane access, flow rule con-
flict resolution and more. Also, SM-ONOS controller (i.e.,
Security-Mode ONOS) provides APIs permission checking
mechanism [11].

6. CONCLUSION

In this paper, we describe three attack cases on well-
known controllers (i.e., ONOS, OpenDaylight and Flood-
light). Those attack cases may be critical to the SDN en-
vironment. In addition, each controller has different imple-
mentation concept, so there are many malicious behaviors
and vulnerabilities depending on controller type. Therefore,
the network administrator has to inspect the security of the
controller and SDN applications before they construct SDN
environment.

We hope that the vulnerability cases described in Section
3 will contribute to communities and vendors who wish to
make their SDN products more secure and to the industry
who want to verify them before the adoption or deployment
stage.
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